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We propose a simple approach to simulating the phonon sector in electron energy-loss spectroscopy
(EELS), as implemented in scanning transmission electron microscopy. Simplification of the problem
is obtained by working with the phonon density of states, a function of phonon energy, which is
an integral over the details of the dispersion relations due to the correlated motions of the atoms.
For a given phonon density of states we derive a spectral distribution function, to distribute the
total inelastic scattering, as calculated within the quantum excitation of phonons model, into an
energy-loss/gain spectrum. The spectral distribution is obtained assuming a linear relationship
between inelastic phonon scattering and atomic mean-squared displacements, a good approximation
for phonon EELS with a detector covering only moderate scattering angles. We provide examples of
the usefulness of the proposed approach in the modeling and interpretation of experimental phonon
EELS data.

I. INTRODUCTION

The development of monochromated sources in tan-
dem with aberration correction has made it possible to
probe the vibrational states of a material at the atomic
scale using the electron energy-loss spectroscopy (EELS)
mode available in scanning transmission electron mi-
croscopy (STEM) [1]. Subsequently, a number of exper-
iments have been carried out, mainly on thinner sam-
ples containing light elements, for example Refs. [2–11].
Thicker specimens containing heavier elements have also
been examined using STEM phonon EELS, for example
Refs. [12–14] and we will make comparisons with ex-
perimental results in the first two of these papers. A
variety of approaches have been used to model and un-
derstand the physics associated with the experimental re-
sults [2, 8, 10, 15–26]. The relationship between some of
these approaches has recently been explored in a paper
by the present authors [27] and the importance of be-
ing able to correctly account for the channeling (multiple
elastic scattering of the probing electrons), particularly
in the case of thicker specimens, was emphasized.

In this paper we propose a simple approach to sim-
ulate energy-loss/gain spectra in the phonon sector of
STEM EELS. We propose to derive a spectral distri-
bution function (SDF) for a given phonon density of
states (PDOS) by assuming proportionality between the
strength of inelastic scattering and atomic mean-squared
displacements. The assumption of proportionality is cer-
tainly satisfied for single-phonon excitations near a tem-
perature of absolute zero and at smaller scattering an-
gles as the temperature increases. We will see that it
remains a reasonable assumption at room temperature
and, even in that case, for off-axis detectors encompass-
ing not too large scattering angles. However, since the
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PDOS integrates over momentum transfer, the approach
discussed here is suitable for energy-loss detectors cov-
ering an angular range of at least one Brillouin zone, a
common scenario in phonon EELS mapping.
The PDOS, arising due to correlated vibrational

modes, is a function of phonon energy. To take into ac-
count a specimen at non-zero temperature, Boltzmann
factors are used to separate the contributions to the
energy-loss and the energy-gain sectors of the SDF, as-
suming dominance of single-phonon excitations. The
SDF can then be scaled, using the total phonon scattering
calculated in the quantum excitation of phonons (QEP)
model [18], into an energy-loss/gain spectrum. The QEP
model takes into account, in a global way and to a good
approximation, the effects of channeling of the probe as
a function of probe position and sample thickness. In its
conventional form, the QEP model integrates all possible
phonon excitations from a given set of initial states with-
out providing any energy-resolved information, whereas
here we distribute the inelastic phonon scattering into an
energy-loss/gain spectrum.
The main advantage of the simple approach is the

speed of calculation, which is of the order of seconds.
We demonstrate its utility by application to recently
published experimental data, an improvement on simply
comparing EELS data to a PDOS.

II. EINSTEIN MODEL AND MEAN-SQUARE
DISPLACEMENT

It will suffice here to consider phonon excitation in
an Einstein model. We assume that the atoms vibrate
independently in an isotropic potential for an harmonic
oscillator. The atomic wave function for the nuclear sub-
system factorizes into a product of wave functions for
three orthogonal directions, each of which has the form
of a standard harmonic oscillator wave function, as

Ψn(u) = Ψn1(u1)Ψn2(u2)Ψn3(u3) , (1)
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where u, with Cartesian components (u1, u2, u3), denotes
the displacement of the atom from its equilibrium posi-
tion. The oscillator wave function for a spatial dimension
is identified by an index i ∈ {1, 2, 3}. Generalizing Eq.
(F2) in Ref. [17], the transition potential in reciprocal
space for a transition from an initial state with quantum
numbersm = (m1,m2,m3) to a final state with quantum
numbers n = (n1, n2, n3) can be written as

Hnm(q) =
h2

2πm
fe(q) e

−2πiq·R

×
∏
i

⟨Ψni
(ui)| e−2πiqiui |Ψmi

(ui)⟩ . (2)

Here m is the relativistically corrected mass of the prob-
ing electron and fe(q) is an electron scattering factor for
the atom, depending on the magnitude q of the scattering
vector q, and which is located at position R.
In the specific case of excitations from the ground state

0 = (0, 0, 0) to the state n = (n1, n2, n3), for example, it
can be shown that Eq. (2) becomes [17]

Hn0(q) =
h2

2πm
fe(q) e

−2πiq·R

×
∏
i

(
−i

√
2 M
ma

q2i

)ni

√
ni!

e−
M
ma

q2i , (3)

where ma is the mass of the atom, M/ma ≡ 2π2⟨u2
0⟩

and ⟨u2
0⟩ is the mean-square displacement (MSD) of the

harmonic oscillator for the ground state.
There are three possibilities for single-phonon excita-

tion, i.e., each of the ni = 1 in turn whilst the remaining
quantum numbers remain zero. Incoherently summing
these three possibilities, the integrated inelastic scattered
intensity for a plane incident wave into a detector D is
given by

IDinel ≡
∑
n

∫
D

|Hn0(q)|2dq

=
h4

m2

[∫
D

f2
e (q) q

2e−4π2⟨u2
0⟩q

2

dq

]
⟨u2

0⟩ , (4)

where we have used q2 =
∑

i q
2
i and the integral in square

brackets is determined by the detector. Assuming a suf-
ficiently small product ⟨u2

0⟩q2 within the detector area,
the important point to note is that the inelastic scattering
intensity is approximately proportional to the the MSD
⟨u2

0⟩. We note that single-phonon de-excitations H0n(q)
could also be considered but would not change the form
of Eq. (4), tacitly assuming T > 0 K. This result was
derived at absolute zero of temperature but remains a
good approximation at room temperature, despite single-
phonon excitations involving initial states having quan-
tum numbers larger than one also then playing a role. In
that case, the respective transition probabilities include,
in addition, higher-order terms of the product ⟨u2

0⟩q2 (see

Appendix E in Ref. [27]) via generalized Laguerre poly-
nomials, which suggest a deviation from the linear re-
lation. However, calculations of inelastic scattering due
to phonon excitation at room temperature in the QEP
model [18] (also see Appendix A), show that the inelasti-
cally scattered intensity IDinel increases approximately lin-
early with increasing mean-squared displacement (MSD)
of the atoms [20, 27]. An example is given in Fig. 1 for
a thin silicon crystal in [110] orientation, under predom-
inantly single-scattering conditions. The almost linear
relationship between the strength of inelastic scattering
and the MSD of the atoms is maintained, at least for the
range of scattering angles considered, and is used in what
follows to derive an approximate but simple way of cal-
culating phonon electron energy-loss spectra for a given
phonon density of states.
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FIG. 1. Average fractional intensity of inelastic scattering
IDinel/I0, where I0 is the intensity of the incident probe, as
a function of the MSD of the atoms in the specimen. The
average fractional intensity is calculated in the QEP model
by scanning a 60-keV electron probe, with 28 mrad semi-
convergence angle, across a unit cell of Si in [110] orientation.
On-axis, circular detectors with collection semi angles β of 24
mrad (solid curve) and 12 mrad (dashed curve) were assumed.
The vertical line marks the MSD of Si at a temperature of
300 K.

III. PHONON DENSITY OF STATES AND
SPECTRAL DISTRIBUTION FUNCTION

The MSD of an atom at a temperature T may be ex-
pressed as follows [28, 29]:

⟨u2
T ⟩ =

ℏ2

2ma

∫ Em

0

coth

(
E

2kBT

)
g(E)

E
dE . (5)

Here ma is the mass of the atom, Em is the maximum of
the phonon energy E, kB is the usual Boltzmann constant
and g(E) is the phonon density of states, normalized to
one, and understood, in what follows, to always be at the
temperature T . The phonon density of states g(E) may
be measured by inelastic neutron scattering [28]. The
numerical integration in Eq. (5) then gives the weighted
average MSD ⟨u2

T ⟩ at a given temperature. The MSD
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is an exponent in the well-known Debye-Waller or tem-
perature factor exp(−2π2⟨u2

T ⟩q2) and a key parameter in
a conventional QEP calculation, which usually does not
provide any energy-resolved detail.
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FIG. 2. (a) PDOS for Si with values digitized from the 300-K
result in Fig. 1 of Kim et al. [30] (crosses) and interpolated
with a cubic spline (blue curve). (b) Normalized spectral
distribution function as derived from the PDOS in (a) at a
temperature of 300 K.

As an example, consider the PDOS for a silicon crystal
at T = 300 K measured using inelastic neutron scatter-
ing by Kim et al. [30] - see Fig. 1 in that paper. We
have digitized their result at the points shown by crosses
in Fig. 2(a). These points were then interpolated by a
cubic spline. Using Eq. (5) with the Si PDOS yields
⟨u2

T ⟩ = 0.00574 Å2, as marked by a vertical line in Fig.
1, and this is close to a recommended experimental value
at room temperature of 0.00572 Å2 from the compilation
in Ref. [31].

It is clear from Eq. (5) that the PDOS g(E) does not
directly determine ⟨u2

T ⟩ at the temperature T but that
the pertinent weighting at each phonon energy E in the
interval [0, Em] is

⟨u2
T,E⟩ =

ℏ2

2ma
coth

(
E

2kBT

)
1

E
, (6)

where ⟨u2
T,E⟩ is the MSD for an harmonic oscillator at

temperature T and with frequency ω = E/ℏ. This means
that, assuming proportionality between the strength of
inelastic scattering and the MSD, as derived for absolute
zero in Eq. (4) and shown by example to be a good
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FIG. 3. Energy loss (upper blue curve) and energy gain (lower
red curve) fractions for single-phonon excitations over the
phonon energy range covered by the Si PDOS and at a tem-
perature of 300 K.

approximation at room temperature in Fig. 1, we have

IDinel ≈ CD⟨u2
T ⟩ = CD

∫ Em

0

g(E)⟨u2
T,E⟩dE . (7)

The constant CD is determined by carrying out a cal-
culation for Iinel(q) in the QEP model [see Appendix
A, Eq. (A3)] for the detector geometry (c.f. the term
in square brackets in Eq. (4)), which provides IDinel and
hence an inelastically scattered fraction of the incident
probe current I0 as I

D
inel/I0. By this means we have intro-

duced explicit energy resolution into a QEP calculation
via the integrand in Eq. (7). This approach takes into
account a weighting provided by the phonon density of
states as a function of phonon energy but the details in
the dispersion curves are not explicit, having been inte-
grated over the Brillouin zone. This limits the approach
to a detector in the diffraction plane of the microscope
that at least covers a Brillouin zone and that should,
at the same time, cover a range of scattering angles (q
values) that are small enough to ensure that the relation-
ship between the inelastic signal and the mean squared
displacement is still linear to a good approximation.
The inelastic scattering intensity IDinel in Eq. (7) con-

tains contributions from both energy loss ∆E = +ℏω due
to excitation as well as possible energy gain ∆E = −ℏω
due to de-excitation of a single phonon of energy E = ℏω.
To separate the two contributions, we consider Boltz-
mann factors b(E) = exp(E/kBT ) expressing the ra-
tio of the probability of vibrational states with quan-
tum numbers n and n + 1 being occupied. The factors
b(E)/[1 + b(E)] and 1/[1 + b(E)] can then be used to
determine the fractions of energy-loss and energy-gain,
respectively. As an example, these factors are plotted in
Fig. 3 for a temperature of T = 300 K over the range of
phonon energies covered by the PDOS of a silicon crys-
tal. As expected, generally energy loss dominates. How-
ever, we note that, for low phonon energies, a substantial
amount of intensity is expected on the energy-gain side
of the spectrum.

Using the loss and gain fractions, we construct what
we term a spectral distribution function (SDF) based on
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Eq. (6) as a function of the energy loss ∆E, and consis-
tent with Eq. (1) in Ref. [32] and Eq. (3) in Ref. [33], as
follows:

SDF(∆E) = C

∫
g(E)⟨u2

T,E⟩

× b(E)δ(E−∆E) + δ(E+∆E)

1 + b(E)
dE . (8)

The first δ-function refers to energy loss and the second
to energy gain. The constant C is used to normalize the
SDF, so that ∫

SDF(∆E) d∆E = 1 . (9)

The SDF calculated for silicon at T = 300 K is shown
in Fig. 2(b). The spectral distribution function has a
different shape when compared to the phonon density of
states. Compared to the underlying PDOS, in Fig. 2(a),
the contribution from lower phonon energies is enhanced
relative to that from higher phonon energies. This is due
to the 1/E term and the factor coth(E/2kBT ) in Eq. (6).
A strong peak is expected on the energy-gain side of the
SDF originating from de-excitations at phonon energies
close to and smaller than the thermal energy kBT , which
is 26 meV at T = 300 K.

IV. MODELING AND INTERPRETATION OF
ENERGY-LOSS SPECTRA

An SDF, calculated for a single atom by the approach
discussed in Sec. III, is normalized to unity. To a reason-
able approximation, in which we neglect multiple inelas-
tic scattering, the intensity of the energy-loss spectrum
due to the phonon scattering of a sample consisting of
many atoms and into a detector can be estimated by scal-
ing the SDF using the inelastic scattering signal IDinel cal-
culated in the QEP model for the pertinent experimental
conditions. The QEP calculation includes effects due to
multiple elastic scattering, i.e., channeling effects. While
the QEP model provides an appropriate scaling of the
spectrum, it doesn’t predict a dependence of the shape
of the spectrum on probe parameters and on the multiple
elastic scattering in the sample. Since the SDF considers
single-phonon excitations, this scaling is a better approx-
imation of the intensity for detection geometries, where
single-phonon excitations dominate.

Let us now illustrate how the considerations in Sec. III
can be applied in the context of modeling and interpret-
ing experimental phonon energy-loss spectra. Venkatra-
man and co-workers [12] have carried out phonon EELS,
recording spectra as a function of probe position for a
60-keV STEM probe with a probe forming aperture hav-
ing a semi-angle of 28 mrad, on an approximately 500 Å
thick silicon crystal oriented down the [110] zone axis.
The EELS entrance apertures used were placed on-axis
with collection semi angles of 12 and 24 mrad, and we
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FIG. 4. Simulated phonon EELS for Si [110] at T = 300 K.
(a) EELS spectra scaled to fractional inelastic scattering in-
tensity for 500 Å thickness at two probe positions marked by
crosses in the inset. Circles in the inset mark atomic positions.
Background-subtracted experimental spectra from Ref. [12]
are plotted and have been scaled by a common factor (from
the given counts). (b) Zoom into the energy-loss range of
the experimental data in (a) with the low energy-loss contri-
butions (< 37 meV) now also removed in the simulation to
emulate effects of background correction.

will focus on the latter here. The EELS spectra obtained
for this relatively thick specimen are a strong function
of the varying channeling conditions encountered when
scanning the probe across the specimen.

Consider, for the case of Si in [110] orientation, and
with a thickness of 500 Å, the signal contributed to the
two different scan points indicated by the crosses in the
inset of Fig. 4(a). The spectra plotted in Fig. 4(a) are
scaled for the two cases of the probe positioned (i) at
the centre of a dumbbell (black curve) and (ii) between
dumbbells (red curve). These results were obtained by
scaling the pertinent SDF, as calculated according to
Eq. (8), to fractional intensity using the intensity Iinel
into a 24 mrad detector calculated in the QEP model for
each probe position, see Appendix B for details, relative
to the total intensity I0 of the incident probe. Smoothing
was applied to the SDF as shown in Fig. 4 to be consis-
tent with the energy resolution of 9 meV (FWHM), which
is slightly lower than what was stated for the experiment
[12] but provides a better agreement to the experimen-
tal data. The two points correspond to on-column and
off-column probe positions for which Venkatraman et al.
have measured background subtracted energy-loss spec-
tra (cf. Fig. 2b in Ref. [12]). For comparison with the
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calculations, the two experimental spectra from Ref. [12]
have been scaled by a common factor from the counts
scale to the fractional intensity scale used in the simu-
lations. The simulations reproduce the intensity ratio of
the position dependent experimental energy-loss spectra
over their whole range.

For a more detailed comparison with the experimen-
tal data, Fig. 4(b) is a zoom into the energy-loss range
for which the background-subtracted experimental data
are available and the curves are now simulated by limit-
ing the contribution to energies in the same energy-loss
range. What we can infer is that the background subtrac-
tion procedure in Ref. [12], mainly designed to deal with
the contributions of the zero-loss peak, has removed most
of the phonon sector of the energy-loss spectrum below
approximately 30 meV. It will also have removed signif-
icant contributions to the spectrum just above 30 meV.
In order to emulate the effects of background subtraction
in the simulation, we removed contributions by phonon
energies below 37 meV. The agreement between theory
and experiment is compelling.

The utility of calculating a spectral distribution func-
tion by the approach described in Sec. III, using Eq. (8),
is further explored by comparison with the experimen-
tal data recorded by Li et al. [13] for conditions where
the EELS detector is off-axis. Vibrational EELS spectra
have been measured across several interfaces in Ref. [13]
but we will limit our comparison to the spectra recorded
from bulk silicon. We have digitized the EELS spec-
trum from Fig. S9B of the supplementary material in
Ref. [13]. The experiment was performed with 30-keV
electrons and with the 25-mrad aperture of the EELS
detector effectively tilted away from the optical axis by
80 mrad. This corresponds to a relatively low projected

scattering vector of q = 1.15 Å
−1

, which is close to the
Bragg beams due to the {600} and {440} planes of the
silicon crystal. This is the reason for the still quite strong
zero-loss peak in the data before background subtraction,
part of which is represented by the black dashed curve
in Fig. 5. However, the zero-loss peak is greatly re-
duced compared to the on-axis case and this facilitates
a comparison of our simulation with experiment at lower
electron energy losses and also on the energy gain side of
the spectrum.

Background subtraction was carried out by applying
the same model as used by Li et al. [13], i.e., a Pear-
son type VII function [34]. However, we allow different
parameters for the energy-loss and the energy-gain side
of the background model, plotted as blue dotted curves
in Fig. 5, to handle an asymmetry in the shape of the
zero-loss peak [35]. The residual phonon spectrum, ob-
tained by subtracting the background model from the
EELS data, is plotted as a green dashed curve for en-
ergy losses larger than +10 meV and energy gains below
−10 meV.

The SDF was calculated according to Eq. (8), for the
given experimental conditions and scaled to counts, as
displayed by the red curve in Fig. 5. Besides the devi-
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FIG. 5. Off-axis vibrational EELS data as recorded with 30-
keV electrons for Si [110] at T = 300 K by Li et. al [13] (black
dashed) with background model (blue dotted) and residual
phonon spectrum (green dashed) in comparison to our simu-
lation (red) for the same conditions. The detector is placed
80 mrad off-axis with a collection semi angle of 25 mrad.

ations when approaching the strong zero-loss peak, the
simulation is in good agreement to the experiment, con-
sidering that somewhat larger scattering angles are in-
volved for the off-axis detector. In particular, the rela-
tive heights of the main peaks are well reproduced. It
should be noted though that the peak ratios of the resid-
ual phonon spectrum are sensitive to background model-
ing.

V. SUMMARY AND DISCUSSION

We have introduced a simple, albeit approximate, ap-
proach to simulating spectra in the phonon sector in
STEM EELS. A normalized spectral distribution func-
tion is derived from the PDOS, assuming proportionality
of inelastic scattering to the mean-squared atomic dis-
placements as a function of phonon energy. Boltzmann
factors are applied to estimate the contributions of energy
loss and gain in the spectrum. The spectral distribution
function is then used to distribute the total inelastic scat-
tering intensity as a function of the position of the STEM
probe obtained by a QEP model calculation that uses an
average MSD at a temperature that is derived from the
same PDOS. This approach is valid for single-phonon ex-
citation and has been shown to give good agreement with
experimental data recorded with high-energy resolution
EELS for a detector covering at least the first Brillouin
zone and that, at the same time, covers a range of scatter-
ing angles that ensures dominance of single-phonon ex-
citations. Multi-phonon excitations, which are expected
to be more important at larger scattering angles, con-
tribute approximately uniformly across the EELS spec-
trum. This means that they are likely to contribute to a
smooth background which will largely be removed from
experimental data during background subtraction.
The effect of multiple elastic scattering on the total

amount of inelastic scattering for different probe posi-
tion or thickness is incorporated via a QEP calculation.
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However, a spectrum derived by scaling a spectral dis-
tribution function with the QEP result is in a single in-
elastic scattering approximation, implying that this is a
valid approach for thinner specimens, where single inelas-
tic scattering dominates. Differences in the shape of the
spectrum as a function of sample thickness, i.e., a differ-
ent thickness dependence for different phonon energies
[24, 26], is not a feature of the proposed approach. Also,
changes in the shape of the spectrum as a function of a
STEM probe used is not accounted for.

Although peaks in the input phonon density of states
generally correspond to those in the calculated electron
energy-loss spectra, the spectra differ significantly from
the phonon density of states. In particular, contribu-
tions from low phonon energies are enhanced compared
to those from high phonon energies. The effect of tem-
perature is taken into account and it has an influence
on the shape of the spectrum, mostly on how strong the
fractions of energy-gain and energy-loss are. The scal-
ing of an energy-loss/gain spectrum with optical param-
eters, often varied in QEP calculations in STEM, such as
electron wavelength, probe convergence angle, zone axis
orientation, mistilt with respect to a zone axis, or par-
tial coherence can easily be investigated using the model
proposed.

An essential aspect of the approach to vibrational
EELS presented here is that it connects the phonon den-
sity of states to a measured spectrum in an approxi-
mate way. Here we have demonstrated how to calcu-
late a spectrum from a density of states. However, going
from a measured spectrum to a density of states is like-
wise possible, and these may be spectra measured locally
as a function of STEM probe position. Effectively, this
can be achieved by taking the loss side of a spectrum
s(∆E), which can be considered as an unnormalized ver-
sion of the SDF for a subset of the energy-loss range (due
to background correction). We then substitute energy
loss ∆E with phonon energy E, assuming dominance
of single-phonon excitations, and apply an inversion of
Eq. (8) in the form

g(E) ∝ E
1 + b(E)

b(E)
tanh

(
E

2kBT

)
s(E)

= E

[
1− exp

(
− E

kBT

)]
s(E) . (10)

In the final line the fractional occupation factors involv-
ing the function b(E) = exp(E/kBT ) have been com-
bined with the tanh-function and constants have been
omitted in expressing a proportionality of the result to
the phonon density of states. It is also possible to re-
construct g(E) from the gain side of a spectrum in an
analogous way. A local PDOS obtained in this way can
be compared to one projected on a given atom or a sub-
set of atoms in first-principles calculations. Likewise, a
PDOS projected to a local subset of atoms could be used
to calculate a local energy-loss/gain spectrum, assuming
perfect localization of the inelastic scattering. The as-
sumption of a local response would not be justified for

vibrational EELS of ionic compounds measured on-axis,
but would hold for off-axis detection [21]. Any possible
effect of multiple scattering on the shape of the spectrum
would not be included in such a simple approach.

Anisotropy of a crystal can be included in this ap-
proach, in as much as it is included in the applied effective
PDOS. For example, for a particular crystal orientation,
the components of the vibrational modes that are per-
pendicular to the incident beam direction dominate in
the spectrum. This means, an effective PDOS applies
in general, a subtlety which has been ignored here. One
can also describe compounds with multiple atom types,
where a specific partial PDOS is available and projected
on each atom in a unit cell. Preserving the relative ratio
of each partial PDOS to the total PDOS, a partial SDF
can be computed for each atom type, and the total SDF
is then obtained by normalizing the sum of the partial
distribution functions. Respective contributions of each
atom type to the total SDF could be separated.

ACKNOWLEDGMENTS

We acknowledge the support of the Swedish Re-
search Council, Olle Engkvist’s foundation, Carl Tryg-
ger’s Foundation, Knut and Alice Wallenberg Foundation
for financial support. Simulations were enabled by re-
sources provided by the Swedish National Infrastructure
for Computing (SNIC) at NSC Centre partially funded
by the Swedish Research Council through Grant Agree-
ment No. 2018-05973.

Appendix A: Components of scattering in the QEP
model

In the QEP model [18] we generate a set {ϕj} of N
so-called auxiliary functions. An auxiliary function ϕj is
obtained by propagating the probe through the specimen
to the exit surface for a positional configuration of the
atoms, and positional configurations are usually calcu-
lated in an Einstein model using a Gaussian probability
distribution function for atomic displacements. The to-
tal intensity observed in the diffraction plane is given by
the incoherent average

I(q) =
1

N

∑
j

|ϕj(q)|2 , (A1)

where ϕj(q) is the Fourier transform to the diffraction
plane of the auxiliary function j. The elastic contribution
to the diffraction pattern is given by taking the modulus
squared of the coherent sum

ϕelas(q) =
1

N

∑
j

ϕj(q) . (A2)
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From these two quantities, the intensity due to inelastic
scattering is calculated by

Iinel(q) = I(q)− |ϕelas(q)|2. (A3)

The inelastic intensity IDinel recorded by a detector
placed in the diffraction plane is calculated by integrating
Iinel(q) over the appropriate range of q vectors.

Appendix B: QEP model simulations for Si

The QEP calculations have been carried out with the
freely available and open source program µSTEM [36]
using a version compiled in double precision. The struc-
ture model for crystalline Si was taken from Ref. [37]
and an isotropic thermal vibration parameter of ⟨u2

T ⟩ =
0.00587 Å2 was used. In the case of Si, the crystal was
aligned with the [110] axis along the incident probe di-
rection, with perpendicular orientations as shown in the
inset in Fig. 4(a). Positional configurations for the QEP-

type calculations were generated for a supercell of size of
a = 27.1525 Å, b = 26.8800 Å and c = 3.8403 Å, which
contains the projected Si [110] unit in a tiling of 5 × 7
along the a and b axes, respectively. The scattering po-
tentials were constructed using the tables of Waasmaier
and Kirfel [38] and sampled on a grid of 512 × 512 pix-
els for the a and b supercell dimensions and using two
slices along the c direction (one for each atomic plane).
For each slice, 400 positional configurations were calcu-
lated and stacked randomly up to a thickness of 500 Å
for each QEP pass. In order to simulate STEM imag-
ing and phonon EELS mapping in comparison to the ex-
perimental data of Venkatraman et al. [12] an incident
electron probe of 60 keV kinetic energy and 28-mrad con-
vergence semi-angle was scanned over 13 × 9 probe po-
sitions, evenly distributed across the projected Si [110]
unit cell, and with 400 QEP passes per probe position.
Spatial coherence was taken into account by convolution
of the scans with an effective Gaussian source distribu-
tion of 1.5 Å full width at half maximum.
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[3] M. J. Lagos, A. Trügler, U. Hohenester, and P. E. Batson,
Mapping vibrational surface and bulk modes in a single
nanocube, Nature (London) 543, 529 (2017).

[4] M. J. Lagos and P. E. Batson, Thermometry with sub-
nanometer resolution in the electron microscope using
the principle of detailed balancing, Nano Lett. 18, 4556
(2018).

[5] J. A. Hachtel, J. Huang, I. Popovs, S. Jansone-Popova,
J. K. Keum, J. Jakowski, T. C. Lovejoy, N. Dellby, O. L.
Krivanek, and J. C. Idrobo, Identification of site-specific
isotopic labels by vibrational spectroscopy in the electron
microscope, Science 363, 525 (2019).

[6] F. S. Hage, D. M. Kepaptsoglou, Q. M. Ramasse, and
L. J. Allen, Phonon spectroscopy at atomic resolution,
Phys. Rev. Lett. 122, 016103 (2019).

[7] G. Radtke, D. Taverna, N. Menguy, S. Pandolfi,
A. Courac, Y. Le Godec, O. Krivanek, and T. Lovejoy,
Polarization selectivity in vibrational electron-energy-
loss spectroscopy, Phys. Rev. Lett. 123, 256001 (2019).

[8] R. Senga, K. Suenaga, P. Barone, S. Morishita, F. Mauri,
and T. Pichler, Position and momentum mapping of vi-
brations in graphene nanostructures, Nature (London)
573, 247 (2019).

[9] S. M. Collins, D. M. Kepaptsoglou, J. Hou, C. W. Ash-
ling, G. Radtke, T. D. Bennett, P. A. Midgley, and Q. M.
Ramasse, Functional group mapping by electron beam
vibrational spectroscopy from nanoscale volumes, Nano

Lett. 20, 1272 (2020).
[10] F. S. Hage, G. Radtke, D. M. Kepaptsoglou, M. Lazzeri,

and Q. M. Ramasse, Single-atom vibrational spec-
troscopy in the scanning transmission electron micro-
scope, Science 367, 1124 (2020).

[11] X. Yan, C. Liu, C. A. Gadre, L. Gu, T. Aoki, T. C.
Lovejoy, N. Dellby, O. L. Krivanek, D. G. Schlom, R. Wu,
and X. Pan, Single-defect phonons imaged by electron
microscopy, Nature (London) 589, 65 (2021).

[12] K. Venkatraman, B. D. Levin, K. March, P. Rez, and
P. A. Crozier, Vibrational spectroscopy at atomic resolu-
tion with electron impact scattering, Nat. Phys. 15, 1237
(2019).

[13] Y.-H. Li, R.-S. Qi, R.-C. Shi, J.-N. Hu, Z.-T. Liu, Y.-
W. Sun, M.-Q. Li, N. Li, C.-L. Song, L. Wang, Z.-B.
Hao, Y. Luo, Q.-K. Xue, X.-C. Ma, and P. Gao, Atomic-
scale probing of heterointerface phonon bridges in nitride
semiconductor, Proceedings of the National Academy of
Sciences 119, e2117027119 (2022).

[14] T. Lee, J. Qi, C. A. Gadre, H. Huyan, S.-T. Ko, Y. Zuo,
C. Du, J. Li, T. Aoki, R. Wu, et al., Atomic-scale origin
of the low grain-boundary resistance in perovskite solid
electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3, Nature Com-
munications 14, 1940 (2023).

[15] L. J. Allen and T. W. Josefsson, Inelastic scattering of
fast electrons by crystals, Phys. Rev. B 52, 3184 (1995).

[16] A. Amali and P. Rez, Theory of lattice resolution in high-
angle annular dark-field images, Microscopy and Micro-
analysis 3, 28 (1997).

[17] A. V. Martin, S. D. Findlay, and L. J. Allen, Model of
phonon excitation by fast electrons in a crystal with cor-
related atomic motion, Phys. Rev. B 80, 024308 (2009).

[18] B. D. Forbes, A. V. Martin, S. D. Findlay, A. J.
D’Alfonso, and L. J. Allen, Quantum mechanical model
for phonon excitation in electron diffraction and imaging
using a Born-Oppenheimer approximation, Phys. Rev. B



8

82, 104103 (2010).
[19] N. R. Lugg, B. D. Forbes, S. D. Findlay, and L. J. Allen,

Atomic resolution imaging using electron energy-loss
phonon spectroscopy, Phys. Rev. B 91, 144108 (2015).

[20] B. D. Forbes and L. J. Allen, Modeling energy-loss spec-
tra due to phonon excitation, Phys. Rev. B 94, 014110
(2016).

[21] C. Dwyer, Prospects of spatial resolution in vibrational
electron energy loss spectroscopy: Implications of dipolar
scattering, Phys. Rev. B 96, 224102 (2017).

[22] L. J. Allen, H. G. Brown, S. D. Findlay, and B. D. Forbes,
A quantum mechanical exploration of phonon energy-loss
spectroscopy using electrons in the aloof beam geometry,
Microscopy 67, i24 (2018).

[23] R. J. Nicholls, F. S. Hage, D. G. McCulloch, Q. M. Ra-
masse, K. Refson, and J. R. Yates, Theory of momentum-
resolved phonon spectroscopy in the electron microscope,
Phys. Rev. B 99, 094105 (2019).

[24] P. Rez and A. Singh, Lattice resolution of vibrational
modes in the electron microscope, Ultramicroscopy 220,
113162 (2021).

[25] P. M. Zeiger and J. Rusz, Efficient and versatile model for
vibrational STEM-EELS, Phys. Rev. Lett. 124, 025501
(2020).

[26] P. M. Zeiger and J. Rusz, Frequency-resolved frozen
phonon multislice method and its application to vibra-
tional electron energy loss spectroscopy using parallel il-
lumination, Phys. Rev. B 104, 104301 (2021).

[27] P. Zeiger, J. Barthel, L. J. Allen, and J. Rusz, Lessons
from the harmonic oscillator – a reconciliation of the
frequency-resolved frozen phonon multislice method with
other theoretical approaches, Phys. Rev. B , in press
(2023).
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